Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Multivariate multipoint evaluation is the problem of evaluating a multivariate polynomial, given as a coefficient vector, simultaneously at multiple evaluation points. In this work, we show that there exists a deterministic algorithm for multivariate multipoint evaluation over any finite field F that outputs the evaluations of an m-variate polynomial of degree less than d in each variable at N points in time (dm + N)1+o(1) · poly(m, d, log |F|) for all m ∈ N and all sufficiently large d ∈ N. A previous work of Kedlaya and Umans (FOCS 2008, SICOMP 2011) achieved the same time complexity when the number of variables m is at most d^{o(1)} and had left the problem of removing this condition as an open problem. A recent work of Bhargava, Ghosh, Kumar and Mohapatra (STOC 2022) answered this question when the underlying field is not too large and has characteristic less than d^{o(1)}. In this work, we remove this constraint on the number of variables over all finite fields, thereby answering the question of Kedlaya and Umans over all finite fields. Our algorithm relies on a non-trivial combination of ideas from three seemingly different previously knownalgorithms for multivariate multipoint evaluation, namely the algorithms of Kedlaya and Umans, that of Björklund, Kaski and Williams (IPEC 2017, Algorithmica 2019), and that of Bhargava, Ghosh, Kumar and Mohapatra, together with a result of Bombieri and Vinogradov from analytic number theory about the distribution of primes in an arithmetic progression. We also present a second algorithm for multivariate multipoint evaluation that is completely elementary and in particular, avoids the use of the Bombieri–Vinogradov Theorem. However, it requires a mild assumption that the field size is bounded by an exponential-tower in d of bounded height.more » « less
-
Wootters, Mary; Sanita, Laura (Ed.)The orbit of an n-variate polynomial f(x) over a field 𝔽 is the set {f(Ax+b) ∣ A ∈ GL(n, 𝔽) and b ∈ 𝔽ⁿ}, and the orbit of a polynomial class is the union of orbits of all the polynomials in it. In this paper, we give improved constructions of hitting-sets for the orbit of read-once oblivious algebraic branching programs (ROABPs) and a related model. Over fields with characteristic zero or greater than d, we construct a hitting set of size (ndw)^{O(w²log n⋅ min{w², dlog w})} for the orbit of ROABPs in unknown variable order where d is the individual degree and w is the width of ROABPs. We also give a hitting set of size (ndw)^{O(min{w²,dlog w})} for the orbit of polynomials computed by w-width ROABPs in any variable order. Our hitting sets improve upon the results of Saha and Thankey [Chandan Saha and Bhargav Thankey, 2021] who gave an (ndw)^{O(dlog w)} size hitting set for the orbit of commutative ROABPs (a subclass of any-order ROABPs) and (nw)^{O(w⁶log n)} size hitting set for the orbit of multilinear ROABPs. Designing better hitting sets in large individual degree regime, for instance d > n, was asked as an open problem by [Chandan Saha and Bhargav Thankey, 2021] and this work solves it in small width setting. We prove some new rank concentration results by establishing low-cone concentration for the polynomials over vector spaces, and they strengthen some previously known low-support based rank concentrations shown in [Michael A. Forbes et al., 2013]. These new low-cone concentration results are crucial in our hitting set construction, and may be of independent interest. To the best of our knowledge, this is the first time when low-cone rank concentration has been used for designing hitting sets.more » « less
-
null (Ed.)We give new and efficient black-box reconstruction algorithms for some classes of depth-3 arithmetic circuits. As a consequence, we obtain the first efficient algorithm for computing the tensor rank and for finding the optimal tensor decomposition as a sum of rank-one tensors when then input is a constant-rank tensor. More specifically, we provide efficient learning algorithms that run in randomized polynomial time over general fields and in deterministic polynomial time over and for the following classes: 1) Set-multilinear depth-3 circuits of constant top fan-in ((k) circuits). As a consequence of our algorithm, we obtain the first polynomial time algorithm for tensor rank computation and optimal tensor decomposition of constant-rank tensors. This result holds for d dimensional tensors for any d, but is interesting even for d=3. 2) Sums of powers of constantly many linear forms ((k) circuits). As a consequence we obtain the first polynomial-time algorithm for tensor rank computation and optimal tensor decomposition of constant-rank symmetric tensors. 3) Multilinear depth-3 circuits of constant top fan-in (multilinear (k) circuits). Our algorithm works over all fields of characteristic 0 or large enough characteristic. Prior to our work the only efficient algorithms known were over polynomially-sized finite fields (see. Karnin-Shpilka 09’). Prior to our work, the only polynomial-time or even subexponential-time algorithms known (deterministic or randomized) for subclasses of (k) circuits that also work over large/infinite fields were for the setting when the top fan-in k is at most 2 (see Sinha 16’ and Sinha 20’).more » « less
An official website of the United States government
